Tema 1: Funciones Lineales
1.1. Modelos lineales. Representación geométrica de una ecuación lineal. Aplicación al cálculo del rendimiento con composición simple. Concepto de pendiente y elasticidad.
1.2. Modelos de Ecuaciones Simultáneas. Forma estructural y reducida de un modelo. Caracterización de un equilibrio: existencia, unicidad y estabilidad. Aplicaciones a un modelo de Oferta y Demanda de un bien.
Tema 2: Matrices y Vectores
2.1. Matrices y Vectores. Operaciones con matrices: suma multiplicación, solución de modelos por inversión de matrices. Aplicaciones a la determinación de equilibrio macroeconómico y multiplicador fiscal.
2.2. Principio de No-arbitraje. Principio de no-arbitraje, representación geométrica de un vector. Aplicación a la valuación de activos mediante un portafolio replica.
Tema 3: Funciones no lineales
3.1. Polinomios. Características de un polinomio, interpretación geométrica. determinación de raíces. Aplicaciones a la toma de decisiones de proyectos: Valor Presente y Tasa Interna de Retorno.
3.2. Ecuaciones Exponenciales y Logarítmicas. Manejo de los exponentes, propiedades de la función exponencial, concavidad y convexidad de una función. Aplicaciones al cálculo de interés continuo y a la toma de decisiones bajo incertidumbre, desigualdad de Jensen.
Tema 4: Matemáticas Financieras
4.1 . Instrumentos de Mercado de Dinero. Tipos de instrumentos, tasa de rendimiento y tasas de descuento, frecuencia de composición y Day Count. Aplicación al cálculo del precio de un Cete y comparación entre los rendimientos mediante la Tasa Efectiva
4.2 . Bonos y Anualidades. Derivación de las fórmulas de perpetuidades, bonos y anualidades. Aplicación a la valuación de una hipoteca y de un bono corporativo.
Tema 5: Cálculo Infinitesimal
5.1 . Derivadas: Máximos y Mínimos. Reglas de derivación de una función, determinación condiciones de primer y segundo orden. Aplicación a la determinación del monto óptimo de producción de una empresa.
5.2 . Cálculo y Optimización. Optimización con restricciones, multiplicadores de Lagrange y condiciones de primer orden. Aplicación a la construcción de un portafolio de acciones con mínima varianza.