Skip to main content

EPFLx: Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction to Discrete Choice Models”. We have selected some important advanced topics, that are presented in detail.

6 weeks
5–6 hours per week
Progress at your own speed
Optional upgrade available

There is one session available:

After a course session ends, it will be archivedOpens in a new tab.
Starts Apr 19

About this course

Skip About this course

The logit model is the workhorse of choice modelers. But it has some limitations. In particular, some assumptions used to derive it may not be consistent with the behavioral reality. It may lead to erroneous forecast. We illustrated using the so-called "red bud-blue bus" paradox, and Multivariate Extre Value models, addressing some of these issues, are introduced.

The sampling procedure used to collect choice data has a critical impact on the model estimation procedure. We introduce classical sampling procedures, and analyze in details the implications for model estimation.

In our quest to address the limitations of the logit model, we introduce a new family of models, based on "mixtures". We define what mixtures are, how they can be calculated. We investigate several important modeling assumptions that they can cover.

Random utility relies on the rationality assumption for the decision-makers. We show that human beings are not always consistent with this assumption, and may exhibit apparent irrationality. Hybrid choice models are able to capture subjective dimensions of the choice process, using variables that are called "latent variables".

Choices evolve over time. Individuals learn, develop habits. In order to capture that, it is necessary to observe individuals over time, and to collect so-called "panel data". The introduction of the time dimension into choice models has some econometrics implications, that we describe in detail.

Who needs choice models, when machine learning algorithms are so powerful and pervasive? In this last chapter, we introduce the similarities and differences between machine learning and discrete choice, and we discuss some potential limitations of machine learning in the context of the analysis of choice data.

At a glance

  • Institution: EPFLx
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:

    Statistics, linear regression, Introduction to Discrete Choice Models.

  • Language: English
  • Video Transcript: English
  • Associated skills:Econometrics, Choice Modeling, Panel Data, Machine Learning, Machine Learning Algorithms

What you'll learn

Skip What you'll learn
  • Multivariate Extreme Value models
  • Sampling issues
  • Mixtures
  • Latent variables
  • Panel data
  • Discrete choice and machine learning
  • Week 1. Multivariate Extreme Value Models
  • Week 2. Sampling
  • Week 3. Mixtures
  • Week 4. Latent variables
  • Week 5. Panel data
  • Week 6. Machine learning

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.