• Length:
    5 Weeks
  • Effort:
    2–4 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $199 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English
  • Course Type:
    Self-paced on your time

Associated Programs:

Prerequisites

  • Applications of TinyML
  • Basic Programming in C/C++
  • TinyML Course Kit

About this course

Skip About this course

Have you wanted to build a TinyML device? In Deploying TinyML, you will learn the software, write the code, and deploy the model to your own tiny microcontroller-based device. Before you know it, you’ll be implementing an entire TinyML application.

A one-of-a-kind course, Deploying TinyML is a mix of computer science and electrical engineering. Gain hands-on experience with embedded systems, machine learning training, and machine learning deployment using TensorFlow Lite for Microcontrollers, to make your own microcontroller operational for implementing applications such as voice recognition, sound detection, and gesture detection.

The course features projects based on a TinyML Program Kit that includes an Arduino board with onboard sensors and an ARM Cortex-M4 microcontroller. The kit has everything you need to build applications around image recognition, audio processing, and gesture detection. Before you know it, you’ll be implementing an entire tiny machine learning application.

Tiny Machine Learning (TinyML) is one of the fastest-growing areas of deep learning and is rapidly becoming more accessible. The third course in the TinyML Professional Certificate program, Deploying TinyML provides hands-on experience with deploying TinyML to a physical device.

What you'll learn

Skip What you'll learn
  • An understanding of the hardware of a microcontroller-based device
  • A review of the software behind a microcontroller-based device
  • How to program your own TinyML device
  • How to write your code for a microcontroller-based device
  • How to deploy your code to a microcontroller-based device
  • How to train a microcontroller-based device
  • Responsible AI Deployment
  • Introduction to the TinyML Kit
  • Deploying TinyML Applications on Embedded Devices
  • Collecting a Custom TinyML Dataset
  • Pre and Post Processing for Keyword Spotting, Visual Wake Words, and Gesturing a Magic Wand
  • Profiling and Optimization of TinyML Applications

Meet your instructors

Vijay Janapa Reddi
Associate Professor
John A. Paulson School of Engineering and Applied Sciences (SEAS), Harvard University
Pete Warden
Technical Lead of TensorFlow Mobile and Embedded
Google

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$199 USD

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.