• Length:
    10 Weeks
  • Effort:
    4–6 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $99 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English

Prerequisites

  • secondary school (high school) math and physics
  • Calculus I
  • knowledge or willingness to simultaneously study basic principles of mechanics of material, fluid mechanics, and thermodynamics and heat transfer

About this course

Skip About this course

Have you wondered how something was manufactured? Do you want to learn what it takes to turn your design into a finished product? This course introduces a wide range of manufacturing processes including machining, injection molding, and 3D printing; and explains the fundamental principles and practices of manufacturing at scale.

For each process, 2.008x explains the underlying physical principles, provides several practical examples and demonstrations, and summarizes design for manufacturing principles. Lectures are also included on cost estimation, quality and variation, robotics, and sustainability. Together, this knowledge will enable you to plan a manufacturing process for a multi-part product, make quantitative estimates of cost and throughput, and recognize important constraints and tradeoffs.

Whether you may be an engineer, entrepreneur, or from another field—by completing 2.008x you will gain the understanding needed to assess a wide variety of manufacturing techniques, identify potential improvements, and confidently pursue the scale-up of innovative products.

What you'll learn

Skip What you'll learn
  • Manufacturing processes in detail: machining, injection molding, casting, thermoforming, sheet metal forming, 3D printing, and more
  • Overarching principles: rate, quality, cost, flexibility, sustainability
  • How to apply design for manufacturing principles, plan a multi-step process, and envision an automated manufacturing system for complex products
  • Emerging technologies including robotics, connected machines, and their implications on the future of manufacturing

Week 1: Introduction and Process Planning
An introduction to the scope and significance of manufacturing worldwide, followed by an overview of the structure of 2.008x and highlights of key topics.  Then, a framework is presented for planning manufacturing processes, and for evaluating process performance based on four key attributes.
 
Week 2: Machining
This module describes machining, the most common process of material removal.  Chapters address the mechanics of material deformation, estimates of material removal rate and cutting forces, practical aspects of turning and milling operations, and methods of machining advanced materials and complex parts.
 
Week 3: Injection Molding
Injection molding is the most widely used plastics manufacturing process.  Chapters of this module describe the process physics, rate-limiting steps, process parameters, thermoplastic materials, mold tooling design, and guidelines for defect prevention.  Examples include molding of toy bricks, cups, and plastic furniture.
 
Week 4: Thermoforming and Sheet Metal Forming
These modules address sheet forming of plastics and metals.  Chapters describe the materials and process considerations, rate- and geometry-limiting aspects including springback and tearing, and explain various uses including manufacturing of plastic packaging and aluminum beverage cans.  A supplement to the thermoforming module introduces other polymer forming processes including those for plastic bottles, bags, and large containers.
 
Week 5: Casting
This module introduces casting, whereby a metal part is made by solidification within a mold.  Modules describe sand casting, die casting, and investment casting processes; rate-limiting steps and factors governing part microstructure, quality, and cost are also analyzed.
 
Week 6: Additive Manufacturing
We first introduce the spectrum of additive manufacturing (AM) technologies, its key applications, and reasons for its rapid growth and significance.  Next, we focus in-depth on the three most prevalent AM processes: extrusion of polymers and composites (i.e., FFF/FDM), photopolymerization (i.e., stereolithography or SLA), and selective laser melting (SLM) of metals.
 
Week 7: Quality and Variation
This module explains basic statistical methods for analyzing, monitoring, and controlling process variation, including the use of control charts.  The critical differences between variation, tolerances, and quality are explained; and principles of precision metrology are introduced.
 
Week 8: Manufacturing Cost
Understanding the cost of manufacturing a part or product, and its relationship to the process details and production volume, is essential to effective scale-up.  This module presents a methodology for estimating manufacturing cost, and examples discuss the cost of making toy bricks, window glass, and smartphones.
 
Week 9: Sustainability and Robotics
First, we discuss the implications of the energy consumption of manufacturing, and of the product life cycle life cycle.  Second, the robotics module introduces several types of robots used in manufacturing, compares their performance, and illustrates how robotics can improve production efficiency and quality.
 
Week 10: The Future of Manufacturing and Conclusion
To conclude, this module provides a brief summary of 2.008x, highlights important emerging manufacturing technologies, and presents the perspectives of instructors and guests on the exciting future of manufacturing.

Meet your instructors

Sanjay Sarma
Vice President for Open Learning
Massachusetts Institute of Technology
A. John Hart
Associate Professor of Mechanical Engineering
Massachusetts Institute of Technology
Dawn Wendell
Senior Lecturer, Department of Mechanical Engineering
Massachusetts Institute of Technology
David Dow
Technical Instructor
Massachusetts Institute of Technology

Pursue a Verified Certificate to highlight the knowledge and skills you gain $99.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally