Robotics: Vision Intelligence and Machine Learning

Provided by University of Pennsylvania (PennX)
Learn
Free
Upgrade
$349 USD

Learn how to design robot vision systems that avoid collisions, safely work with humans and understand their environment.

Part of 1 program:
Course Format:Instructor-Led
Start Date:Mar 18, 2019

What you will learn

  • The fundamentals of image filtering and tracking, and how to apply those principles to face detection, mosaicking and stabilization
  • How to use geometric transformations to determine 3D poses from 2D images for augmented reality tasks and visual odometry for robot localization
  • How to recognize objects and the basics of visual learning and neural networks for the purpose of classification

Overview

How do robots “see”, respond to and learn from their interactions with the world around them? This is the fascinating field of visual intelligence and machine learning. Visual intelligence allows a robot to “sense” and “recognize” the surrounding environment. It also enables a robot to “learn” from the memory of past experiences by extracting patterns in visual signals.

You will understand how Machine Learning extracts statistically meaningful patterns in data that support classification, regression and clustering. Then by studying Computer Vision and Machine Learning together you will be able to build recognition algorithms that can learn from data and adapt to new environments.

By the end of this course, part of the Robotics MicroMasters program, you will be able to program vision capabilities for a robot such as robot localization as well as object recognition using machine learning.

Projects in this course will utilize MATLAB and OpenCV and will include real examples of video stabilization, recognition of 3D objects, coding a classifier for objects, building a perceptron, and designing a convolutional neural network (CNN) using one of the standard CNN frameworks.

Before you start

  • College-level introductory linear algebra (vector spaces, linear systems, matrix decomposition)
  • College-level introductory calculus (partial derivatives, function gradients)
  • Basic knowledge of computer programming (variables, functions, control flow) is preferred, but students may also choose to learn it on their own. The class projects will be carried out MATLAB/Python, with C++ as an option.
  • Instructor-Led: course contains assignments and exams that have specific due dates, and you complete the course within a defined time period.
  • Course ends: Mar 18, 2019

Meet Your Instructors

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Of all edX learners:
73% are employed
Of all edX learners:
45% have children
Based on internal survey results
396,968 people are learning on edX today