Skip to main content

Solar Energy: Photovoltaic (PV) Energy Conversion

Learn how solar cells generate electricity, and about the semiconductor physics and optics required to design and manufacture solar cells.

...
Solar Energy: Photovoltaic (PV) Energy Conversion

Choose your session:

53,020 already enrolled!
Started Apr 11
Ends Jul 11
Starts Aug 29
Ends Nov 29
Starts Dec 13
Ends Mar 27, 2024

Solar Energy: Photovoltaic (PV) Energy Conversion

Learn how solar cells generate electricity, and about the semiconductor physics and optics required to design and manufacture solar cells.

Solar Energy: Photovoltaic (PV) Energy Conversion
12 weeks
10–11 hours per week
Instructor-paced
Instructor-led on a course schedule
Free
Optional upgrade available

Choose your session:

53,020 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Started Apr 11
Ends Jul 11
Starts Aug 29
Ends Nov 29
Starts Dec 13
Ends Mar 27, 2024

About this course

Skip About this course

The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.

This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.

We recommend that you complete this course prior to taking the other courses in this MicroMasters program.

At a glance

  • Institution: DelftX
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:

    Bachelor's degree in Science or Engineering or the successful completion of TU Delft's Professional Certificate Program Solar Energy.

  • Language: English
  • Video Transcript: English
  • Associated programs:
  • Associated skills: Physics, Semiconductors, Energy Conversion, Optics, Solar Cells

What you'll learn

Skip What you'll learn
  • The principles behind the potential loss mechanisms in photovoltaic devices
  • The semiconductor physics necessary to understand solar cell performance and engineering
  • The optics and light management tools necessary for optimal solar cell design
  • To model all aspects of a working solar cell, understanding the efficiency limits and design rules

Audit learners can develop their skills and knowledge in relation to the above learning objectives by having access to the video lectures, a limited number of practice exercises and discussion forums.

Verified learners are offered a number of study tools to demonstrate they have mastered the learning objectives. They will have access to all exercises: practice, graded and exam questions.

Week 1: Introduction
How do solar cells convert solar energy into electrical energy? What are the basic building blocks of a solar cell?

Week 2: Semiconductor Basics
What are semiconductors? What is a band diagram?

Week 3: Generation and Recombination
What are the physics of charge carriers?

EXAM

Week 4: The P-N Junction
What is a diode? How does a diode change when we apply a voltage? What about when we illuminate it with solar energy?

Week 5: Advanced Concepts in Semiconductors
What happens when we connect a semiconductor to a metal? What other types of junctions of semiconductor materials are important for solar cells?

Week 6: Light management 1: Refraction/Dispersion/Refraction
Which optical phenomena are important for solar cells? How can we use them to make sure maximal light is absorbed.

EXAM

Week 7: Light management 2: Light Scattering
Which techniques can we use to scatter light in our solar cell to enhance optical path length?

Week 8: Electrical Losses
Pull all the concepts together to understand how to engineer solar cells.

EXAM

Learner testimonials

Skip Learner testimonials

" I was able to familiarize myself with the latest theoretical knowledge on solar energy. This helped me to develop as an engineer and improve my skills." -- Previous student

"TU Delft 's Solar Energy Engineering MicroMasters program is great to get a grasp of the overall science of solar energy. It provides context to the current industry trends, and at the same time gives you the tools you need to know where the industry will be in the next decade." -- Bertram, The Netherlands

About the instructors

More about this course

Skip More about this course

LICENSE

The course materials of this course are Copyright Delft University of Technology and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (CC-BY-NC-SA) 4.0 International License.

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

This course is part of Solar Energy Engineering MicroMasters Program

Learn more 
Expert instruction
5 graduate-level courses
1 year 1 month
9 - 10 hours per week

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.