• Length:
    5 Weeks
  • Effort:
    2–4 hours per week
  • Price:

    FREE
    Add a Verified Certificate for $99 USD

  • Institution
  • Subject:
  • Level:
    Intermediate
  • Language:
    English
  • Video Transcript:
    English

Associated Programs:

About this course

Skip About this course

Training acomplex deep learning model with a very large datasetcan take hours, days and occasionally weeks to train. So, what is the solution? Accelerated hardware.

Youcan use accelerated hardware such as Google’s Tensor Processing Unit(TPU) or Nvidia GPU to accelerateyourconvolutional neural network computations timeon the Cloud. These chips arespecifically designed to support the training of neural networks, as well as the use of trained networks(inference).Accelerated hardware has recently been proven to significantly reduce training time.

But the problem is that your datamight be sensitiveand you may not feel comfortable uploading iton apublic cloud, preferring to analyze it on-premise.In this case, youneed to use an in-house system withGPU support. One solution isto useIBM’s Power SystemswithNvidia GPU andPowerAI. ThePowerAIplatform supports popular machine learning libraries and dependencies including Tensorflow, Caffe, Torch, and Theano.

In this course, you'll understand what GPU-based accelerated hardware is and how it can benefit your deep learning scaling needs. You'll also deploydeep learning networks on GPU accelerated hardware for several problems, including the classification ofimages and videos.

What you'll learn

Skip What you'll learn
  • Explain what GPU is, how it can speed up the computation, and its advantages in comparison with CPUs.
  • Implement deep learning networks on GPUs.
  • Train and deploy deep learning networks for image and video classification as well as for object recognition.

Module 1 – Quick review of Deep Learning
Intro to Deep Learning
Deep Learning Pipeline

Module 2 – Hardware Accelerated Deep Learning
How to accelerate a deep learning model?
Running TensorFlow operations on CPUs vs. GPUs
Convolutional Neural Networks on GPUs
Recurrent Neural Networks on GPUs

Module 3 – Deep Learning in the Cloud
Deep Learning in the Cloud
How does one use a GPU

Module 4 – Distributed Deep Learning
* Distributed Deep Learning

Module 5 – PowerAI vision
Computer vision
Image Classification
* Object recognition in Videos.

Meet your instructors

Saeed Aghabozorgi
PhD, Sr. Data Scientist
IBM

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$99.00

View a PDF of a sample edX certificate
  • Official and Verified

    Receive an instructor-signed certificate with the institution's logo to verify your achievement and increase your job prospects

  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn

  • Proven Motivator

    Give yourself an additional incentive to complete the course

  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.