• Duración:
    5 semanas
  • Dedicación:
    2–4 horas por semana
  • Precio:

    GRATIS
    Agregar un Certificado Verificado por $39 USD

  • Institución
  • Tema:
  • Nivel:
    Introductory
  • Idioma:
    English
  • Transcripción de video:
    English

Programas asociados:

Prerrequisitos

Some Python Experience

Sobre este curso

Omitir Sobre este curso

LEARN TO ANALYZE DATA WITH PYTHON

Learn how to analyze data using Python. This coursewill take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more!

Lo que aprenderás

Omitir Lo que aprenderás

You will learn how to:

  • Import data sets
  • Clean and prepare data for analysis
  • Manipulate pandas DataFrame
  • Summarize data
  • Build machine learning models using scikit-learn
  • Build data pipelines
  • Data Analysis with Python is delivered through lecture, hands-on labs, and assignment.

It includes following parts:

Data Analysis libraries: will learn to use Pandas DataFrames, Numpy multi-dimentional arrays, and SciPy libraries to work with a various datasets. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions.

Plan de estudios

Omitir Plan de estudios

COURSE SYLLABUS

Module 1 - Importing Datasets

  • Learning Objectives
  • Understanding the Domain
  • Understanding the Dataset
  • Python package for data science
  • Importing and Exporting Data in Python
  • Basic Insights from Datasets

Module 2 - Cleaning and Preparing the Data

  • Identify and Handle Missing Values
  • Data Formatting
  • Data Normalization Sets
  • Binning
  • Indicator variables

Module 3 - Summarizing the Data Frame

  • Descriptive Statistics
  • Basic of Grouping
  • ANOVA
  • Correlation
  • More on Correlation

Module 4 - Model Development

  • Simple and Multiple Linear Regression
  • Model EvaluationUsingVisualization
  • Polynomial Regression and Pipelines
  • R-squared and MSE for In-Sample Evaluation
  • Prediction and Decision Making

Module 5 - Model Evaluation

  • Model Evaluation
  • Over-fitting, Under-fitting and Model Selection
  • Ridge Regression
  • Grid Search
  • Model Refinement

Conoce a tus instructores

Joseph Santarcangelo
PhD., Data Scientist
IBM

Pursue a Verified Certificate to highlight the knowledge and skills you gain
$39.00

Ver un modelo de certificado de edX en PDF
  • Oficial y verificado

    Obtén un certificado con la firma del instructor y el logotipo de la institución para demostrar tus logros y aumentar las posibilidades de conseguir trabajo

  • Fácil de compartir

    Agrega el certificado a tu currículum o publícalo directamente en LinkedIn

  • Incentivo comprobado

    El certificado te da un motivo más para completar el curso

  • Apoya nuestra labor

    edX, una organización sin fines de lucro, se sustenta con los certificados verificados para financiar la educación gratuita para todo el mundo