Skip to main content

MITx: Flight Vehicle Aerodynamics

Discover the concepts, theories, models, and methods used in the aerodynamic analysis and design of modern aircraft.
16 weeks
12 hours per week
Instructor-paced
Instructor-led on a course schedule
This course is archived

About this course

Skip About this course

This course covers the physics, concepts, theories, and models underlying the discipline of aerodynamics. A general theme is the technique of velocity field representation and modeling via source and vorticity fields, and via their sheet, filament, or point-singularity idealizations.

The intent is to instill an intuitive feel for aerodynamic flowfield behavior, and to provide the basis of aerodynamic force analysis, drag decomposition, flow interference estimation, and many other important applications. A few computational methods are covered, primarily to give additional insight into flow behavior, and to identify the primary aerodynamic forces on maneuvering aircraft. A short overview of flight dynamics is also presented.

Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.

FAQ

Is there a required textbook?
You do not need to buy a textbook. All material is included in the edX course and is viewable online. This includes a full textbook in PDF form. If you would like to buy a print copy of the textbook, a mail-order service will be provided.

Can I still register after the start date?
You can register at any time, but you will not get credit for any assignments that are past due.

How are grades assigned?
Grades are made out of four parts: simple, multiple-choice "Concept Questions " completed during lectures; weekly homework assignments; and two exams, one at the midpoint and one at the end of the course.

How does this course use video? Do I need to watch the lectures live?
Video lectures as well as worked problems will be available and you can watch these at your leisure. Homework assignments and exams, however, will have due dates.

Will the text of the lectures be available?
Yes, transcripts of the course will be made available.

Will the material be made available to anyone registered for this course?
Yes, all the material will be made available to all students.

What are the prerequisites?
The student is expected to be well-versed in basic mechanics, vector calculus, and basic differential equations. Good familiarity with basic fluid mechanics concepts (pressure, density, velocity, stress, etc.) is expected, similar to the content in 16.101x (however, 16.101x is not a requirement). If you do not know these subjects beforehand, following the class material will be extremely difficult. We do not check students for prerequisites, so you are certainly allowed to try.

Who can register for this course?
Unfortunately, learners from Iran, Sudan, Cuba and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course. Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.

At a glance

  • Institution: MITx
  • Subject: Math
  • Level: Intermediate
  • Prerequisites:

    Basic mechanics, vector calculus, basic differential equations; good familiarity with basic fluid mechanics concepts (pressure, density, velocity, stress, etc.) similar to the content in 16.101x (however 16.101x is not a requirement).

  • Language: English
  • Video Transcript: English
  • Associated skills:Differential Equations, Mechanics, Physics, Aerodynamics, Interactive Learning, Vector Calculus, Fluid Mechanics

What you'll learn

Skip What you'll learn
  • To model and predict the aerodynamic flows about wings and bodies
  • To quantify the role of viscous boundary layers in producing drag and limiting lift
  • To quantify and optimize the lift distribution on aircraft wings
  • To reduce and analyze experimental flow survey data to determine profile drag
  • To describe the motion of a maneuvering aircraft and quantify its aerodynamic forces
  • To predict the airloads on unsteady airfoils
  • To estimate the effects of compressibility in high-speed aerodynamic flows

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.