Skip to main content

MITx: Microstructural Evolution of Materials Part 2: Defects and Diffusion

Discover the principles of point defect evolution that explain materials science phenomena.

Microstructural Evolution of Materials Part 2: Defects and Diffusion
5 weeks
8–10 hours per week
Self-paced
Progress at your own speed
This course is archived

About this course

Skip About this course

This module is Part 2 of a four-part series on the Microstructural Evolution in Materials. Taken together, these four modules provide similar content to the MIT Course 3.022: Microstructural Evolution of Materials.

This series introduces various kinetic phenomena in various classes of materials. The course explains how materials develop different microstructure based on different processing techniques, and it relates these microstructures to the properties of the material.

Microstructural Evolution of Materials is intended for engineering and science students and professionals with an interest in materials statistics, kinetics, and microstructural transformations.

Part 1 of the course will introduce important concepts in statistical mechanics that are especially relevant to materials scientists. Topics include solid solutions, the canonical ensemble and heat capacity.

Part 2 of the course focuses on point defect evolution, including diffusion, substitutional diffusion, ionic defects, and ionic conductivity.

Part 3 of the course discusses surfaces and surface-driven reactions. Topics include surface energy, faceted and non-faceted growth, and growth and ripening.

Part 4 of the course focuses on phase transformations, including nucleation and growth, precipitate growth, interface stability, and glass transition.

At a glance

  • Institution: MITx
  • Subject: Engineering
  • Level: Advanced
  • Prerequisites:

    Diffusion

    • Fick’s First Law of Diffusion
    • The Diffusion Coefficient
    • Fick’s Second Law of Diffusion
    • Analytic Solutions to Fick’s Second Law

    Diffusion Examples

    • Example #1: Meat Processing
    • Example #2: Doping of Semiconductors
    • Example #3: Chemical Strengthening of Glass

    Self-Diffusion

    • Kinetics of Substitutional Self-Diffusion
    • Example: Substitutional Self-Diffusion in Gold

    Substitutional Diffusion

    • Vacancy Diffusion
    • Vacancy Sources and Sinks
    • Kirkendall Effect
    • Motion of Crystal Planes
    • Interdiffusion in Ionic Solids

    Ionic Defects & Defect Reactions

    • Types of Point Defects
    • Kröger-Vink Notation
    • Defect Reactions
    • Equilibrium Constant for Defect Reaction
    • Charge Compensation in Ionic Solids
    • Charge Compensation in Non-Stoichiometric Solids

    The Brouwer Approximation

    • Introduction to the Brouwer Approximation
    • Brouwer Diagrams
    • F-Centers

    Ionic Conductivity

    • An Introduction to Ionic Conductivity
    • Applications of Ionic Conductors
  • Language: English
  • Video Transcript: English
  • Associated skills: Ionic Conductivity, Materials Science, Mechanics, Chemical Kinetics, Microstructure

What you'll learn

Skip What you'll learn

At the end of this course, you will be able to:

  • Understand the microscopic mechanisms that govern diffusion
  • Explain how ion exchange can be used to chemically strengthen glass
  • Predict the charge carrier concentration in various charge compensation regimes using the Brouwer approximation

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.